If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49a^2+28a=0
a = 49; b = 28; c = 0;
Δ = b2-4ac
Δ = 282-4·49·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-28}{2*49}=\frac{-56}{98} =-4/7 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+28}{2*49}=\frac{0}{98} =0 $
| x-500=5-4x | | -10x+2x=310 | | 3w+4-5w=12 | | 3(x+1=48 | | x+2x+7=3x- | | 2x2+19x+34=5x+15 | | 344=28x+190 | | 2x/9=64 | | 2r−r=20 | | 3x-2=3174 | | x^2-2,89=0 | | 14(x−18)=1+3x | | -4f+3=19 | | 8/3=14/3x | | w/4+3=-2.12 | | (x+3)^2−4=0 | | 30x^2+4/5x=0 | | (4x-3)/5=1/6 | | (X-2)(x)(x)=3174 | | 4.2-3x=10.2 | | 100=2(w+19 | | 2.1+v/2=-1.1 | | 4x-3/5=1/6 | | -4b+12=4 | | 1+5x+2x=34 | | 20t^2-t-1=0 | | 12a-9=-24+9a | | g-98=-14 | | 8.56=3-2x | | 20=-6x+3x+7 | | 6.3=3x-3.3 | | 17-b=6(b-3) |